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Free electrons with a helical phase front, referred to as “twisted” electrons, possess an orbital angular
momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction.
This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have
numerous potential applications in materials science. Measuring this quantity often relies on a series of
projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we
propose a nondestructive way of measuring an electron beam’s OAM through the interaction of this
associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced
currents within the loop, which are found to be directly proportional to the electron’s OAM value.
Moreover, the electron experiences no OAM variations and only minimal energy losses upon the
measurement, and, hence, the nondestructive nature of the proposed technique.
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Introduction.—Electrons can possess net quantized
orbital angular momentum (OAM) while undergoing
free-space propagation [1]. The wave function ψ associated
with such an electron includes an exp ðilφÞ term arising
from its helical phase fronts, where l and φ are an integer
and the azimuthal coordinate, respectively. Beams consist-
ing of these “twisted” electrons are referred to as electron
vortex beams. Different techniques, such as direct imprint-
ing of a phase variation [2], amplitude [3] and phase [4]
holograms, and magnetic needles [5] have experimentally
been shown to generate such electron beams. In turn, these
electron beams possess quantized OAM and circulating
current densities Jφ in a plane orthogonal to their propa-
gation direction. It thus follows that these current densities
cause twisted electron beams to carry a magnetic dipole
moment lμB in addition to their intrinsic spin magnetic
dipole moment �μB, where μB is the Bohr magneton [6].
Hence, unlike its intrinsic spin, the magnetic moment
associated with its twisted wave front is in principle
unbounded, allowing values as high as 200μB to be
achieved experimentally [7,8]. Such a large unbounded
magnetic moment may find applications in materials
science [9], overcoming the fact that the generation of
spin-polarized electron beams has historically been affected
by empirical and fundamental difficulties [10]. Among
future potential applications are investigations related to
magnetic dichroism in materials [11], the fundamental
nature of radiation [12], exotic physics such as virtual

forces [13], and the interaction of twisted electrons with
light beams [14]. Many of these examples require the
analysis of the electron beam’s OAM content, a process
adopted from its optical counterparts and that is usually
carried out by making the beam go through phase-
flattening projective measurements by means of phase
holograms [15–17]. However, the analysis of each OAM
component requires the use of a distinct hologram, which
can make the investigation of a beam’s OAM components
long, tedious, and inefficient. Moreover, the beam’s OAM
content, after passing through a phase mask, will have a
value different from that of the initial state [16].
In this Letter, we propose an alternative way of meas-

uring an electron beam’s OAM relying on electric fields
induced by time-varying magnetic fields. The principle of
our technique is related to one where a magnet is dropped
through a conductive tube (or ring). The falling motion
of the magnet generates currents within the tube, that in
turn produce a magnetic force countering the magnet’s
descent [18–20]. By using a similar reasoning, in the
nonrelativistic regime, one can calculate the induced
current inside a microscale conductive ring due to the
motion of an OAM-carrying electron traveling through it.
Because the electron’s OAM and magnetic moment are
quantized, the magnetic field emanating from the electron
will also be quantized and will produce discrete induced
currents inside the ring that can be related directly to the
OAM carried by the electron.
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Theory.—We use a semiclassical approach to describe
the interaction between a propagating electron vortex beam
and a conductive material. Let us consider an electron with
a rest mass me propagating along a specific axis, e.g., the z
axis, and possessing a well-defined central kinetic energy E
and momentum p0, where c is the velocity of light in
vacuum. Under the slowly varying amplitude approxima-
tion, the wave packet associated with this electron must
satisfy the paraxial Schrödinger equation. The correspond-
ing wave function is quantized, and holds a specific shape
based on its initial probability and phase distribution
conditions. For instance, it may be quantized in the trans-
verse plane as well as in the longitudinal direction [1],
which yields the following wave packet in cylindrical
coordinates r;φ; z,

ψp;l;nðr;φ; z; tÞ ¼ uLGp;lðr;φ; tÞuHGn ðζÞeiðp0z−EtÞ=ℏ; ð1Þ

where uLG and uHG are Laguerre-Gauss and Hermite-Gauss
modes [21], respectively, in which p and n are positive
integers defining the electron’s distribution in the transverse
plane and the longitudinal direction. l is an integer number
that is associated with the OAM carried by the beam and
also defines its transverse distribution. The electron wave
packet’s center of mass is denoted by ζ ¼ z − p0t=me,
while ℏ is the reduced Planck constant. On account of the
electron’s OAM, its rest frame four-current density consists
only of a scalar and an azimuthal component, according to
the expression

jαrest ¼ ðcρ; Jr; Jφ; JzÞ ¼
�
−ceP; 0;

ℏl
mer

P; 0
�
; ð2Þ

where ρ, Jr, Jφ, and Jz correspond to charge density and
radial, azimuthal, and longitudinal current densities,
respectively, while P ¼ Pðr0;φ0; z0Þ ¼ jψp;l;nðr;φ; z; tÞj2
is the probability density function of the electron’s position
in its rest frame defined by the coordinates r0;φ0; z0, and −e
is the electron charge. The four-current densities in the
laboratory frame that the electron perceives as traveling
along the z direction can then be calculated via an inverse
Lorentz transformation, jαlab ¼ ðΛα

βÞ−1jβrest, yielding
jαlab ¼ ½−ceγP; 0; ðℏl=merÞP;−γβceP�, where Λα

β is the

Lorentz transformation matrix, β ¼ p0=ðmecÞ, and γ ¼
ð1 − β2Þ−1=2 [22]. Likewise, a Lorentz boost along the z
axis must also be applied to the electron’s rest-frame
coordinates to express its current densities with respect
to the laboratory frame coordinates, i.e., xα

lab ¼ ðΛα
βÞ−1xβ

rest,
where xα ¼ ðct; rÞ. One may associate the first, third, and
last terms of the four-vector current density with an
electrostatic potential V and the azimuthal and longitudinal
vector potentials Aφ and A∥, respectively. The azimuthal
current density Jφ ¼ ðℏl=merÞPeφ generates a magnetic
field B ¼ ∇ ×A oriented along the electron’s propagation

direction, i.e., the z axis, where ∇ is the gradient operator
and eφ is the azimuthal unit vector. The vector potential
Aφ at a given position r can then be expressed directly
as a solution to one of Poisson’s equations, namely,
AφðrÞ ¼ μ0=ð4πÞ

R
d3r0Gðr; r0ÞJφðr0Þ, where Gðr; r0Þ ¼

jr − r0j−1 is the corresponding Green function. The
electron’s transverse motion for any value of l is then
considered as a “localized” current loop defined by
Ie ¼ eℏ=ðπmew2

0Þeφ, as prescribed by the relation

lμB ¼ Ieðπr2lÞ, where rl ¼ w0

ffiffiffiffiffiffiffiffi
l=2

p
is the radius at which

an electron is maximally distributed and w0 is the minimum
radius of its Gaussian distribution.
The vector potential associated with such an azimuthal

current can be expressed in the form

Aφðr; zÞ ¼
μ0Ieη

πv3=2
½uKð2η2Þ − ðuþ vÞEð2η2Þ�; ð3Þ

where u ¼ r2l þ r2 þ z2, v ¼ 2rlr, η ¼ v1=2ðuþ vÞ−1=2,
and Kð·Þ and Eð·Þ are the complete elliptic integrals of the
first and second kind, respectively [22]. As depicted in
Fig. 1, we consider such electrons passing through a tube of
thickness w, radius a, conductivity σ, and length L. The
tube radius is large enough to ensure that the electron’s
wave function nearly vanishes at its inner radius. In
particular, for p ¼ 0 mode distributions defined by an
arbitrary l index, the tube radius a is chosen to be much
greater than the radius rl, i.e., a ≫ rl. The conductive tube
can be considered as a sequence of infinitesimal circle
loops positioned at a longitudinal distance h from the tube’s
center. As predicted by Faraday’s law of induction, when
the twisted electron travels through the tube, its longi-
tudinal magnetic field induces an eddy current in each of
the tube’s infinitesimal loops. According to Lenz’s law, the
direction of these currents must generate a magnetic field
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FIG. 1. System in which an electron vortex beam with a central
energy E and momentum p0, which is in its lower longitudinal
mode [uLGp;lðr;φ; tÞuHG0 ðζÞeiðp0z−EtÞ=ℏ], propagates through a cyl-
inder with conductivity σ and permeability μ. The relative motion
of both entities results in the generation of a current in the
infinitesimal loop of thickness dh.
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that is opposed to the motion of the electron beam. Its
value, however, will depend on the time variation of the
magnetic flux ΦB through each loop, i.e., −∂tΦB. Neither
the electrostatic potential V nor the longitudinal vector
potential A∥ contributes to the magnetic flux ΦB. Only the
azimuthal vector potential Aφ is relevant to the analysis.
Because of the cylindrical symmetry of the electron-tube
system, the vector potential is also independent of φ. The
induced electric field on the circle loop located at position
h, and hence the induced current, is therefore azimuthal and
expressed as Eφ ¼ −∂tAφða; z − hÞ, where z is the elec-
tron’s relative longitudinal position. One can show, by
means of Ohm’s law, dI ¼ σEφðwdhÞ, that the total current
within the tube induced by an electron with a magnetic
dipole moment lμB is given by the expression

I¼ 3

4π

�
p0

me

�
ðσμwaÞðlμBÞ

Z
L=2

−L=2

γ2ðz−hÞdh
½a2þ γ2ðz−hÞ2�5=2 ; ð4Þ

where μ is the tube’s permeability. The proportionality of
this relation describes the quantization of the induced
current within the tube due to the discrete nature of the
electron’s OAM. By integrating Eq. (4), an analytical
expression for this current can be obtained and is plotted
as a function of electron position relative to the cylinder’s
center in Fig. 2(a) for various values of electron OAM. As a
result, one can conceive a device for OAMmeasurement by
detecting the corresponding quantized current induced
inside a tube or a thin loop circuit. As shown in
Fig. 2(a), currents of the order of 10’s of pA are induced
in the loop and could be potentially read out using an
ampere meter (e.g., Tektronix 6485 Picoammeter).
Therefore, this technique can potentially be used to
measure OAM values of twisted electron beams. The
direction of the induced current additionally provides

information on the sign of the OAM value. Moreover,
since the generated current is directly proportional to the
material’s conductivity, it follows that by using a more
conductive material, one could increase the current by
several orders of magnitude. Though these induced
currents are rather short-lived, a combination of fast elec-
tronics, optimized cylinder dimensions, and secondary
methods, such as autocorrelation techniques, can be used
to overcome experimental difficulties related to the
short interaction between the electron and the cylinder
[23]. Our proposed technique has no influence on the
OAM of the electron beam since the electron’s canonical
OAM is conserved in the presence of an external longi-
tudinal magnetic field [24]. The only property that the
measurement affects is the energy carried by the electron
[25]. This is due to the fact that the induced currents
will counter the motion of the electron. The energy
loss due to the electron-tube interaction is ΔE ¼
−ð2πσawÞðp0=meÞ

Rþ∞
−∞ dz

R L=2
−L=2½∂zAφða;zþhÞ�2dh, which

slightly decelerates the electron. This deceleration can
potentially reach a relatively high value, resulting in a large
radiated electromagnetic power emitted from the electron,
as indicated by the Larmor formula. However, due to its
very short time of interaction with the tube, the energy lost
by the electron can only realistically reach a value on the
order of 10−20 eVwhen an electron with an OAM l ¼ 100
is considered (we assume the parameters reported in
Fig. 2). Such energy values are obtained when deducing
the force applied on the electron by the tube. Another way
of obtaining insight on the electron’s energy loss is to
calculate the total energy contained within the fields
generated by the relative motion of the electron. This
energy can be calculated numerically by first finding the
magnetic field generated by the cylinder’s loops of currents
using the Biot-Savart law [26] and then integrating the total
energy stored in these magnetic fields and within the
electric fields associated with the currents themselves. In
particular, this method was employed to produce the
energy density plots found in Figs. 2(b) and 2(c). One
can see that the act of measuring the electron’s OAM has
nearly no effect on the electron itself. Indeed, unlike
projective measurement techniques, where the electron’s
phase front is flattened and projected on a Gaussian mode,
the electron’s OAM does not change during the measure-
ment. For these reasons, the electron’s motion through the
tube leaves it largely unperturbed. Up until this point, we
only considered the casewhere an electron travels perfectly
along the center of the tube. A simple extension of this
analysis reveals that the calculated induced currents are not
significantly affected by breaking the apparatus’s cylin-
drical symmetry. We further discuss how the currents are
affected by asymmetries in experimental apparatuses in the
Supplemental Material [23].
This nondestructive approach to measuring OAM may

create a conceptual paradox. One may mistakenly argue

FIG. 2. (a) Theoretically calculated total induced current in a
conductive tube by an electron vortex beam. We assumed that the
electron beam carries OAM of l ¼ 1, 5 and 10, and that the
conductive tube is made of platinum. Longitudinal cross section
of the tube depicting the relative magnetic energy density
generated by its induced eddy currents when an electron con-
sisting of a high OAM quantum (l ¼ 100) is (b) entering the tube
and (c) in the middle of the tube. Here, we assumed an electron
beam with central energy E ¼ 100 keV and a platinum tube with
length L ¼ 20 μm, thickness w ¼ 1 μm, and radius a ¼ 10 μm.
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that because this measurement leaves the electron’s quan-
tum state (OAM and energy) unchanged, it could challenge
the validity of a wave particle duality experiment (quantum
complementarity). Consider a double-slit experiment in
which, due to an electrostatic interaction, the electron wave
function is split into two parts jui and jdi. Both parts are
then coherently recombined and interfere at a screen, as
illustrated in Fig. 3(a) [27]. The electron’s state can be
described as a superposition of both paths, as if it is in a
coherent superposition of states jui and jdi, resulting in
the formation of an interference pattern on the screen. In the
case when the electron is equally likely to take each path,
its state may be described as jψi ¼ ðjui þ eiδjdiÞ= ffiffiffi

2
p

,
where δ is the relative phase between the states. The
corresponding density matrix is pure, ρ ≔ jψihψ j ¼ ðjui
huj þ e−iδjuihdj þ eiδjdihuj þ jdihdjÞ=2. In this expres-
sion, the terms e−iδjuihdj and eiδjdihuj carry the interfer-
ence pattern’s phase information and can therefore be
associated with the fringe visibility, which is unity for this
ideal case. The terms juihuj and jdihdj, respectively,
describe the probability of finding an electron in the jui
or jdi path, both of which are equiprobable events for this
case [28].
Now, consider two conductive circuits introduced into

each of the possible paths, as shown in Fig. 3(b). As
mentioned above, these circuits have the capacity to
measure an electron’s OAM with minimal energy loss,
allowing for the detection of whether an OAM-carrying
electron has taken a given path. When no electron travels
through the circuit, the circuit is in a state j0ic. When an
electron with an OAM number l travels through the circuit,
it will induce a quantized current, changing the circuit to a
state defined by jilic, which can be expressed as a super-
position of the loop’s current eigenstates jnic, i.e.,
jilic ¼

P
ncnjnic, where cn ¼ hnjilic is an expansion

coefficient depending on various experimental parameters
describing the interaction between the free electron and the
loop itself. Hence, the system consisting of both circuits
can be described by the tensor product jiuicjidic, where
jiuic and jidic, respectively, represent the state associated
with the electrical current going through circuits in the jui
and jdi paths. Because the circuit has the ability to provide
information about which path the electron has taken, it
provides information about the particle nature of the
electron, while the presence of fringes gives information
about its wave nature. Therefore, the presence of currents
and fringes would seemingly allow one to detect both the
electron’s wave and particle nature simultaneously, violat-
ing the principle of complementarity.
However, prior to going through any of the circuits, the

system consisting of the electron and the two circuits
can initially be expressed as jψ ii ¼ ð1= ffiffiffi

2
p Þðjui þ

eiδjdiÞj0uicj0dic. After the electron has gone through
either of the circuits, the system’s final wave function
becomes jψfi ¼ ð1= ffiffiffi

2
p Þðjuijiluicj0dic þ eiδjdij0uicjildicÞ,

where the electron is entangled with the circuits. The
circuits thus act as a nonlocal “environment” and cause
the electron state to partially decohere [29]. In order to
observe the effect of the circuits’ presence on the obtained
interference pattern, we take the partial trace over the
circuits’ states. The reduced density matrix will correspond
to ðjuihuj þ e−iδαjuihdj þ eiδα�jdihuj þ jdihdjÞ=2, where
α ¼ h0ujilujihildj0di. One can observe that the visibility
terms of the reduced density matrix in the fjui; jdig basis
will be modified by the factor α < 1, where for identically
coupled circuits, i.e., jildi ¼ jilui, α ¼ jc0j2. This coeffi-
cient, defined by h0jilic, will vary with the coupling
between the free electron and the circuit’s state, which is
determined by various experimental parameters. Such
parameters, which include the circuit’s radius, for instance,
can be modified to provide a varying α coefficient affecting
the fringe visibility.
In conclusion, we present a nondestructive technique that

can be used to measure the OAM of an electron beam. The
technique is based on the interaction of the quantized
magnetic dipole moment of the twisted electron and a
conductive tube. The beam’s OAM components are mea-
sured by detecting the quantized induced eddy currents in
the tube. These electrons suffer minimal energy losses
and the method is nondestructive. To illustrate the limi-
tations of the method, we also describe the possibility of
using such a device in a gedanken quantum experiment,
in which the knowledge of an electron’s presence is
needed. Doing so would result in reducing the visibility
of observed interference as prescribed by complementarity.
A prospective extension to the method could be using the
tube to generate radiation with an approach similar to that
of Ref. [30] through the formation of plasmons by
introducing a discontinuity in the tube, such as the absence
of conductive material at a given azimuthal angle.

BP

BP

BP

BP(b)

(a)

FIG. 3. Proposed experiment in which the effect of conductive
circuits in an OAM-carrying electron double-slit experiment is
considered. (a) The electron double-slit experiment in which no
circuits are present. (b) The electron double-slit experiment in
which a circuit is present in each of the possible paths, jui or jdi,
taken by the electron where the coefficient α ¼ 0 (i.e., the
electron and the loops are perfectly coupled). BP annotations
refer to biprisms.
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However, this would result in larger energies being lost by
passing electrons. This method’s minimal electron energy
loss is an essential aspect to its nondestructive nature
which, along with the preservation of the electron’s original
OAM, presents this technique as a viable alternative to
modern projective measurements.
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